Grundwissen 9. Klasse

Grundwissen 9. Klasse	
Wissen/Können	Aufgaben
Rechnen mit Quadratwurzeln	1. Vereinfache: a) $\sqrt{75} - \sqrt{12}$ b) $(\sqrt{2} \cdot \sqrt{3})(\sqrt{3} + \sqrt{3})$
Teilweises Radizieren Vier Grundrechenarten	c) $\sqrt{32a^3}$: $\sqrt{2a^5}$ (für a >0) $\left[3\sqrt{3}; 6\sqrt{2}; \frac{4}{a}\right]$
Wahrscheinlichkeit verknüpfter Ereignisse	2. Von 90 Abiturienten haben 50 Latein und 60 Spanisch gelernt. Jeder Abiturient hat mindestens eine der beiden Sprachen gelernt.
Vierfeldertafel	Bestimme die Wahrscheinlichkeit dafür, dass ein zufällig herausgegriffener Abiturient Latein und Spanisch gelernt hat.
Quadratische Gleichungen	3. Bestimme jeweils die Lösungsmenge:
Lösungsformel: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	a) $\frac{1}{4}x^2 - x - 3 = 0$ [L={-2;6}] b) $5x^2 + 15x = 0$ (Spezialfall!) [L={-3;0}]
2a	c) $\frac{x+8}{3} - \frac{10}{3x} = 2$ $\left[L = \left\{-1 - \sqrt{11}; -1 + \sqrt{11}\right\}\right]$
Quadratische Funktionen	4. Gegeben ist die Funktion f: $x \rightarrow -\frac{1}{2}x^2 + 3x - \frac{5}{2}$
Scheitelform herstellen mit Hilfe der quadratischen Ergänzung	a) Bestimme den Scheitel und zeichne den Graphen [S(3/2)]
Zeichnen von Graphen mit Hilfe der Scheitelform	b) Bestimme die Nullstellen von f graphisch und rechnerisch [{1;5}]
Funktionsterm bestimmen	5. Bestimme eine Gleichung der Parabel, die durch die Punkte A(2/2), B(3/0), C(4/2) verläuft.
Gebrochene Exponenten	6. Berechne jeweils ohne Taschenrechner:
Definition: $a^{\frac{z}{n}} = \sqrt[n]{a^z}$	a) $8^{\frac{5}{2}} \cdot 2^{\frac{5}{2}}$ b) $16^{0.85} : 16^{0.1}$ c) $\left(25^{0.3}\right)^{-5}$ d) $\sqrt[3]{32} : \sqrt[3]{4}$
Potenzgesetze: $(a^r)^s = a^{r \cdot s}$	7. Bestimme jeweils die Lösungsmenge:
$a^{r} \cdot a^{s} = a^{r+s}$; $a^{r} : a^{s} = a^{r-s}$	a) $x^3 = 9$ b) $x^4 = 81$ c) $x^5 = -7$ d) $x^6 = -8$
$a^r \cdot b^r = (a \cdot b)^r$; $a^r : b^r = (a : b)^r$	
Strahlensatz und Ahnlichkeit Erkennen der 2 Strahlensatzfiguren Formeln für beide Strahlensatzfiguren Ähnlichkeitssätze für Dreiecke: WW, S:S:S	8. Berechne x , y und z, falls g h i.
	 9. Geg.: Dreieck mit a=5cm, b=4cm, c=3cm, α=90°, β=53°. Welche der folg. Dreiecke sind dazu ähnlich? Begründung! a) Ein Dreieck mit den Seitenlängen 6cm, 4,5cm und 7,5cm b) Ein Dreieck mit den Seitenlängen 4cm und 3cm und mit einem 53°-Winkel c) Ein Dreieck mit einem rechten und einem 37°-Winkel
<u>Trigonometrie</u>	10. Gib ohne Verwendung des Taschenrechners
$\sin \alpha = \frac{\text{Geg.}}{\text{Hyp.}} \cos \alpha = \frac{\text{An.}}{\text{Hyp.}} \tan \alpha = \frac{\text{Geg.}}{\text{An.}}$	$\sin \alpha$, $\cos \alpha$ und $\tan \alpha$ an für $\alpha = 0^{\circ}(30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ})$ 11. Berechne den Neigungswinkel einer Geraden mit der
Besondere Winkel: 0°,30°,45°,60°,90° $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$; $\sin^2 \alpha + \cos^2 \alpha = 1$	Gleichung: $2y - 4x = 7$
Steigung einer Geraden: $m = tan \alpha$	12. Zeige: $tan^2 \alpha + 1 = \frac{1}{cos^2 \alpha}$
Einheitskreis	13. Bestimme mithilfe des Einheitskreises die Lösungen der Gleichung, wobei 0° <∝< 360°
Satzgruppe des Pythagoras	a) $\cos \propto = 0.5$, b) $\sin \propto = -0.5\sqrt{2}$ 14. Berechne den Neigungswinkel einer Raumdiagonalen im Würfel
Satz des Pythagoras: $a^2 + b^2 = c^2$ Diagonale im Quadrat: $d = \sqrt{2} \cdot a$	15. Die Basis eines gleichschenkligen Dreiecks ist 5cm lang. Berechne, wie lang die Schenkel sein müssen, damit das Dreieck rechtwinklig ist.
Höhe im gleichseitigen Δ : $h = \frac{1}{2}\sqrt{3} \cdot a$	