Grundwissen 10. Klasse (G9NEU)

Wissen/Können	Aufgaben			
Wachstum & Logarithmus				
Lineares & exponentielles W.	1. Zeichne jeweils den Graphen der Funktion.			
Exponentialfunktion	a) $f(x) = 3^x$ b) $f(x) = 3 \cdot (\frac{2}{3})^x$			
•	2. Löse die Exponentialgleichungen:			
$f(x) = b \cdot a^{x}; \ a > 0$	a) $2^{x} \cdot 3 = 9$ b) $3 \cdot 2^{x-1} = 24$ c) $1.5 \cdot 2^{\frac{x}{3}} = 15$			
$D = \mathbb{R}$; $W = \mathbb{R}^+$ (b>0), $W = \mathbb{R}^-$ (b<0)	2. Dansahara ahara Manusandunan dan Tarahan mada mana			
Exponentialgleichungen und	3. Berechne ohne Verwendung des Taschenrechners.			
Logarithmen	a) $\lg(0,1)$ b) $\lg(\sqrt[3]{100})$ c) $\lg(\frac{\sqrt[3]{100}}{0,1})$			
$a^{x} = b \Leftrightarrow x = \log_{a}(b) \ a, b \in \mathbb{R}^{+}, a \neq 1$				
Rechenregel:	Erinnerung: $\lg(b) = \log_{10}(b)$			
$\log_a(b^r) = r \cdot \log_a(b) a, b \in \mathbb{R}^+, a \neq 1$				
<u>Stochastik</u>	4. Aus einer Urne mit 5 roten und 8 weißen Kugeln werden zwei			
Mehrstufige Zufallsexperimente	Kugeln zufällig entnommen. Wie groß ist die Wahrscheinlich-			
Pfadregeln	keit, dass sie die gleiche Farbe haben?			
1. Die Wahrscheinlichkeit eines Ergebnisses				
ist gleich dem Produkt der Wahrschein-	5. Eine faire Münze (P("Zahl") = P("Kopf") = 0,5) wird viermal			
lichkeiten längs des zugehörigen Pfades.	geworfen. Berechne die Wahrscheinlichkeiten für folgende			
2. Die Wahrscheinlichkeit eines Ereignisses	Ereignisse.			
ist gleich der Summe der Wahrscheinlich- keiten der Ergebnisse, die zu diesem				
Ereignis gehören.	a) Es erscheint genau zweimal hintereinander Zahl.b) Der erste und der letzte Wurf sind Kopf.			
Simulation von ZE	b) Dei eiste und dei letzte Wari sind Kopi.			
Monte-Carlo-Methode				
Sinus- und Kosinusfunktion	6. Gib $\alpha=30^\circ, \beta=45^\circ$ und $\gamma=90^\circ$ im Bogenmaß an.			
Bogenmaß: $x = \frac{\alpha}{180^{\circ}} \cdot \pi$	7. Gib jeweils alle Lösungen im Intervall [0; 2π [an. a) $\sin x = 1$ b) $\sin x = 0.5$ c) $\cos x = -0.5$ d) $\sin 2x = 0$			
(x im Bogenmaß, α im Gradmaß)				
Sinus- und Kosinusfunktion				
W=[-1;1], Periodenlänge 2π Allgemeine Sinusfunktion	8. Zeichne jeweils den Graphen der Funktion.			
$y = a \cdot \sin(b(x+c)) + d$	a) $f(x) = 3 \cdot \cos(x) - 2$ b) $f(x) = -\sin(0.5x)$			
Amplitude a und Periodenlänge $P = \frac{2\pi}{h}$	$c) f(x) = \sin\left(-x + \frac{\pi}{4}\right)$			
Ganzrationale Funktionen	9. Gib das Verhalten der ganzrationalen Funktion <i>f</i> für			
Eigenschaften	betragsmäßig große x-Werte an, ermittle die Nullstellen der			
Verhalten im Unendlichen: höchste	Funktion und faktorisiere den Funktionsterm soweit wie möglich.			
vorkommende Potenz (= Grad)	a) $f(x) = -x^4 + 4x^2 - 4$ b) $f(x) = \frac{1}{2}x^3 - 3x$			
Nullstellenbestimmung (Vielfachheit)	3			
Symmetrie von Funktionsgraphen	10. Überprüfe auf Symmetrie.			
- achsensymmetrisch: $f(-x) = f(x)$	a) $y = \cos(x) + 4$ b) $y = -7x^3 + 7x^2$ c) $y = x^4 + 3x^2 - 1$			
- punktsymmetrisch: $f(-x) = -f(x)$	11. Bestimme jeweils die Lösungsmenge:			
Biquadratische Gleichungen	(2x ² - 12) ² = 4(16 - 3x ²) [$L = \{-2; -\sqrt{5}; \sqrt{5}; 2\}$]			
Raumgeometrie	12. Eine Pyramide mit V = 135 cm^3 hat als Grundfläche ein			
	gleichseitiges Dreieck mit der Seitenlänge 6 cm.			
Oberfläche und Volumen von	Berechne die Höhe der Pyramide. $15\sqrt{3}$ cm			
Pyramide, Kegel und Kugel:				
$V_{Py} = \frac{1}{3} \cdot G \cdot h \qquad O_{Py} = G + M$	13. Ein Kegel hat den Radius r=4,5cm und die Mantellinie m=7,5cm.			
$V_{Ke} = \frac{1}{3}\pi r^2 h \qquad O_{Ke} = \pi r^2 + \pi r m$	Berechne das Volumen und die Oberfläche des Kegels und den Neigungswinkel einer Mantellinie.			
$V_{Ku} = \frac{4}{3}\pi r^3$ $O_{Ku} = 4\pi r^2$	[$V = 40.5 \cdot \pi cm^3$; $O = 54 \cdot \pi cm^2$; $\alpha \approx 53.1^\circ$]			
- Ku 3	14. Berechne Oberfläche und Volumen einer Kugel mit dem			
	Durchmesser d = 3,3cm.			
1	$[V = 5.9895 \cdot \pi cm^3 : O = 10.89 \cdot \pi cm^2]$			

 $[V = 5.9895 \cdot \pi cm^3; O = 10.89 \cdot \pi cm^2]$